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Abstract: New instruments and techniques used in capturing scientific data are exponentially increasing the 
volume of data consumed by in-silico research, usually referred to as data deluge. Once captured, scientific data 
goes through a cleaning workflow before getting ready to analysis that will eventually confirm the scientists 
hypothesis. The whole process is, nevertheless, complex and takes the focus of the scientist attention away from 
his/her research and towards solving the complexity associated with managing computing products. Moreover, as 
the research evolves, products of the exploration become an important source of provenance information and 
reuse. Based on these observations, we claim that in-silico experiments must be supported by a holistic 
hypothesis data model. The latter offers a data perspective for scientific hypothesis specification, and a 
declarative approach for expressing and running simulations. By confronting simulation results with phenomenon 
observations scientific hypothesis quantitative validation is achieved, guiding parameters tuning and, eventually, 
hypothesis evolution. This paper presents the hypothesis data model, shows how to run experiments by 
transforming declarative simulation expressions into a query evaluation plan and discusses the first 
implementation prototype using the query engine QEF, developed at the DEXL laboratory. A neuroscience 
scientific model illustrates the applicability of the data model. 

Categories and Subject Descriptors: Hypothesis databases, scientific model management system, 
hypothesis evolution. 

1.      INTRODUCTION 

The availability of important experimental and computational facilities nowadays allows many 
large-scale scientific projects to produce a never before observed amount of experimental and 
simulation data. This wealth of data needs to be structured and controlled in a way that readily 
makes sense to scientists, so that relevant knowledge may be extracted to contribute to the 
scientific investigation process.  

Current data management technologies are clearly unable to cope with scientists' requirements 
[Stonebreaker et al 2009] despite the efforts the community has dedicated to the area. Such 
efforts can be measured by the community support to an international conference (SSDBM), 
running for almost 20 years on scientific and statistical database management, various workshops 
on associated themes, and important projects such as POSTGRES at Berkeley [Stonebraker and 
Rowe 1986]. All these initiatives have considerably contributed to extend database technology 
towards the support to scientific data management.  

Giving such a panorama, one may argue about what is missing on the support to scientific 
applications from a database viewpoint. This paper contributes to this issue by arguing that 
scientists need an integrated environment for specifying, testing and evolving scientific 
hypotheses. The latter is a formal attempt to explain an observed phenomenon that can be 
experimentally validated to confirm or disprove it1. From a scientific exploration perspective, the 

                                                                 
1 http://en.wikipedia.org/wiki/Scientific_hypothesis, last access 04/09/2009.  
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statement of a scientific hypothesis delineates the problem being investigated by means of a 
causal relationship between an observed phenomenon and other ones trying to explain it. In 
computational modeling, such relationships are quantitatively expressed through scientific 
models that formally, most often mathematically, synthesize the understanding about the studied 
phenomenon. By its turn, in-silico experiments (i.e. simulations) require the transformation of 
scientific models into computational models that attempt to reproduce in software the scientific 
model, and ultimately the associated scientific hypotheses. Finally, scientists run experiments 
using computational models loaded with selected parameter values. Experimental results are, in 
the sequel, confronted with the corresponding phenomenon observation values quantitatively 
validating the hypothesis. 

The described process highlights the different kinds of data produced during a in-silico 
scientific exploration. From the qualitative statement of a scientific hypothesis to its quantitative 
validation, a complex set of data and metadata are produced and put together as part of the 
explanation for the scientific exploration. Moreover, the evaluation of in-silico experiments 
involves running the specified computational models to transform and produce new data, a 
process very similar, but not identical, to query processing in databases. A scientific hypothesis 
database management system (SHDMS) is responsible for managing data, metadata and in-silico 
experiments associated to a scientific hypothesis. In addition, a SHDMS manages data and 
metadata associated with the phenomenon the scientific hypothesis attempts to explain. The 
confrontation of phenomenon observations with simulation results, obtained from a SHDMS, sets 
the basis for qualitative validation of scientific hypotheses in the context of the SHDMS.  

Thus, in this paper a data model and simulation language for scientific hypothesis based 
exploration is presented. It extends the work in [Porto et al. 2007] that focused on the 
representation of scientific models by introducing scientific hypotheses, and by showing how this 
model can be integrated with the Query Engine Framework (QEF) for running experiments. A 
use case based on a neuroscience research is presented to illustrate the applicability of the model. 

     The remaining of this paper is structured as follows. Section 2 discusses related work. Section 
3 defines the scientific model used to run simulations, and introduces a specific computational 
model that will be used throughout the paper. Section 4 presents the Hypothesis Data Model 
(HDM), and shows how to instantiate a scientific application example directly into it. Section 5 
describes the framework developed to support hypothesis evaluation. Finally, section 6 concludes 
the paper with suggestions for future work. 

2.     RELATED WORK  

Data and knowledge management supporting in-silico scientific research is a comprehensive 
topic that has appeared under the eScience label. It encompasses the semantic description of the 
scientific domain, the experiment evaluation through scientific workflow systems and result 
analysis through a myriad of different techniques, among other in-silico related tasks. Given the 
broad class of application domains that may benefit from eScience related data management 
techniques, it has been postulated that there is a small chance that a single solution would cover 
the diverse set of requirements coming from these domains [Stonebraker et al. 2009]. The 
semantic description of scientific domains through ontologies [Gruber 1995] has attracted the 
attention of the scientific community as a means to support collaboration through common 
conceptual agreement. In this line, GeneOntology2 is probably the most notorious and successful 
example of practical adoption of ontologies in the scientific domain. Similarly, scientific 

                                                                 
2 http://www.geneontology.org/ 
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workflows have become the de facto standard for expressing and running in-silico experiments, 
using execution environments, such as [Oinn et al. 2000], [Altintas et al 2004], [Porto et al. 
2007]. Despite that, we believe that in-silico experiments require a more comprehensive model 
that can offer scientists a holistic view of his/her research. In particular, we propose a data model 
with which scientist may define scientific hypotheses, describe scientific models [Hunter 2006] 
and run simulations using computational models. Integrate hypotheses in a data model is, 
however, not trivial.  

Hypothesis modeling has been introduced in databases back in the 80’s [Bonner 1990]. In that 
context, one envisions a hypothetical database state, produced by delete and insert operations, 
and verifies whether queries are satisfied on that hypothetical state.  This approach is, however, 
far from the experimental semantics settings that we are interested in. Closer to our objective is 
the logical model proposed in the context of the HyBow project [Racunas et al. 2004a],[ Racunas 
et al. 2004b] for modeling hypotheses in the biology domain. Hypotheses (H) are represented as 
a set of first-order predicate calculus sentences with free quantifiers. In conjunction with an 
axiom set specified as rules that models known biological facts over the same universe and 
experimental data, the knowledge base may contradict or validate some of the sentences in H, 
leaving the remaining ones as candidates to new discovery. As more experimental data is 
obtained and rules identified, discoveries become positive facts or are contradicted. In the case of 
contradictions, hurting rules must be identified and eliminated from the theory formed by H.  

The approach adopted by Hybrow supports hypothesis validation in the spirit of what we aim 
to represent, i.e., a formal definition to be confronted with experimental results and extending the 
scientific knowledge base. Nevertheless it does not entirely satisfy our requirements. In 
particular, the adopted model-theoretical approach for hypothesis validation does not seem 
adequate for representing hypothesis-oriented research that considers quantitative validation of 
simulation results. Moreover, our work aims at integrating hypotheses with the simulation 
environment in order to bridge the gap between qualitative and quantitative representation, and to 
the best of our knowledge, this is the first work that addresses this problem. 

3.      SCIENTIFIC DATA MODEL 

A scientific hypothesis drives research by proposing an explanation for a studied phenomenon. 
Indeed, according to wikipedia1, a scientific hypothesis is used as a tentative explanation of an 
observation, but which has not yet been fully tested by the prediction validation process for a 
scientific theory. A hypothesis is used in the scientific method to predict the results of further 
experiments, which will be used either to confirm or disprove it. Seen as explanations of 
phenomena, hypotheses should get as close to the object they explain as possible to the point 
where one may conceptually replace the other within a modeled distance. In this context, 
scientific hypotheses play a fundamental role in experimental science by bringing rigor to 
problem statement and results validation. In addition, in-silico experiments validate hypotheses 
through simulations, whose results, which we name here hypothesis’ instances, associate 
quantitative values to hypotheses.  In doing so, scientific hypotheses introduce a valuable 
contribution by bridging the gap between qualitative description of the phenomenon domain and 
the corresponding quantitative valuation. Thus, in our modeling approach we aim at coming up 
with a representation of scientific hypotheses that may be used in qualitative (i.e. ontological) 
assertions and with minimum tricks can be quantitatively confronted to phenomenon 
observations. For the sake of completeness, in the next section we revisit the scientific model 
data model, initially introduced in [Porto et al. 2008]. It serves as the basis for the hypothesis 
data model. 
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3.1    Scientific Model  

The scientific model data model enables scientists to represent the knowledge associated to a 
scientific model, its associated computational model, in addition to expressing in-silico 
experiments. Moreover, the phenomenon being modeled is described and its observations 
registered. 

3.1.1  Observed Phenomenon 

The starting point of an in-silico scientific investigation comprehends the specification of the 
phenomenon one attempts to explain. It is described in the data model as: 

Ph ( Phid, OPh, Title), where:              (1)  

• Phid is the phenomenon unique identifier; 

• OPh  is a url of a domain ontology, setting the formal conceptual representation of the 
domain in which the phenomenon is inserted;  

• Title assigns a label identifier to the phenomenon. 

3.1.2  Scientific Model Example 

A scientific model provides a comprehensive description of the scientist interpretation about the 
observed phenomenon. Of prime importance are a formal representation, possibly using 
mathematical formulae, and a reference to the phenomenon it attempts to explain. Considering 
that a phenomenon and its scientific models share the same domain, the phenomenon ontology is 
attributed to the scientific models (SM) description. In addition, the SM description includes 
bibliography references and other metadata supporting model presentation. In [Porto et al. 2008] 
a SM is formally defined, but due to space limitation it will be not presented here.  

In order to illustrate a scientific model, consider the Hodgkin&Huxley model [Hodgkin and 
Huxley, 1952], a scientific model from the neuroscience domain representing the conductance on 
the membrane of a single neuron, whose formalization is given by the following mathematical 
equation:                                   

I = m
3
 h gNa  (E – ENa  ) + n

4
  gK (E – EK ) + gL (E – EL ),  where:    (2) 

gi, i={Na, K, l} is a time-dependent variable that represents the membrane conductance for 
sodium, potassium and leakage; Ei models the equilibrium potential for each ion channel; E is the 
membrane potential; and, n, m and h are parameters controlling the probability of the sodium or 
potassium gates to be opened. The total ionic current across the membrane of the cell is modeled 
by the variable I.   

3.2    Computational Model 

A scientific model suggests a representation of a phenomenon using some formal language. In 
order to run in-silico experiments that simulate the referred phenomenon, a scientist builds a 
computational representation of the scientific model. Although desirable, an automatic mapping 
from a formal description of a SM to its computational model is still not feasible, and requires 
engineering efforts from the scientific group. Nevertheless, once a computation model (CM) has 
been specified and its software components developed, an engine may read such specification 
and automatically instantiate an execution on input data. The CM definition in our data model 
gathers required metadata for such automatic instantiation. Figure 1 illustrates the representation 
of a computational model implementing the HH scientific model (see equation (2)). 

In this context, the Environmental ontology and the Domain ontology contribute to 
disambiguate CM specifications. The Environmental ontology describes the execution 
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environment associated to the CM, including: programming language specification, 
programming environmental parameters, libraries, documentation, input and output parameters,  
initialization procedure, and executing programs. Parameters that are read or produced by the 
simulation are structured into a XML document, whereas set-up values are expressed as attribute-
value pairs. 

In order to capture output produced by the underlying program, an outputWrapper class must 
be provided to transform the output into a set of attribute value pairs. The output produced by the 
wrapper is mapped into a XML structure. 

Fig. 1. A Hodgkin-Huxley computational model 

A CM is formally defined as a 7-tuplet, such as:  

CMCMCMCM ( CMid, SMid, XOE, XOPh, Mi, Mo, A ), where:                    (3) 

CMid is the CM resource identification; SMid is a reference to the associated scientific model; 
XOE and XOPh are the XML serializations of the Environmental and Phenomenon ontologies, 
respectively3; Mi and Mo are the mappings between the underlying program input and output 
parameters (structured into two formats: XML and attribute-value pairs) and the corresponding 
domain ontology properties (XML tree leave nodes). Finally, A corresponds to annotations 
identifying authoring information.  

3.3    Simulations 

Simulations are in-silico experiments run to assess the quantitative distance of the scientific 
hypothesis with respect to the observed phenomenon. By analogy with databases, where users’ 
data is intentionally expressed in queries, we call simulation query the specification of a 
simulation.  

Let us define a simulation database DBS= {VCM1, VCM2, …, VCMm}, where VCMi, 1< i ≤ m, are 
n-ary data views on the computational model. Given a computational model CMi, a 
corresponding n-ary data view VCMi abstracts the software program behavior associated to the 
CM, by exposing its input and output parameters as data attributes and completely hiding its 
implementing programs. This is similar to modeling user-defined functions as relations in 

                                                                 
3 The serialization of Ontologies into an XML structure follows a detailed technique not presented here. The 
main intuition is to form a tree structure having concepts as nodes and aiding in semantically qualifying 
program’s parameters. 
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databases [Chauduri and Shim, 1993]. Consider, for instance, the data view below corresponding 
to the CM of the HH model (Figure 1): 

HodgkinHuxley(i:(m, n, h, gNa, gK, gL, ENa, EK, EL),o:(I))             (4) 

The HodgkinHuxley data view presents one attribute for each input/output CM parameter. 
Querying a data view requires binding attributes in the input parameter set (prefixed with i:) to 
input values and retrieving results associated to output parameters (prefixed with o:). In this 
context, a simulation query (S) interrogates a data view VCMi by providing binding values and 
obtaining results from output attributes.  

3.3.1  Simulation Language 

In-silico experiments are commonly expressed using workflow or some sort of script languages. 
We aim to leverage the expression of simulations by providing a high-level query language with 
which scientists may express a large class of workflows, notably those that can be modeled as 
direct acyclic graphs.  

In this context, a simulation query is specified as expression in non-recursive Datalog 
[Ullman, 1988] comprising a head and a body. The body is a boolean expression composed of a 
conjunction of predicates, whereas the head specifies a predicate holding literals and variables 
containing the expected simulation results, necessarily appearing in one of the predicates in the 
body. Users interface with simulation queries by providing the input parameters and set-up 
values needed for the evaluation of the predicates, and obtaining in return the output values in the 
head of the query. 

3.3.2  Simulation Predicate 

A simulation query predicate is specified as: 

  Si ( (Vi,Wi) ; (Xi’, Xo’) ; (Ii,Oi) ; IS )                               (5) 

In (5), Si labels the simulation query predicate and associate it with the corresponding CM 
data view (VCMid ) resource identification. Vi and Wi are the two sets of variables defined to refer 
to values provided as input or produced as output when running the underlying CM program.  
The set of input and output parameter’s values are provided by the XML documents X’i and X’o, 
respectively. Note that the associated CM definition specifies the schemas for Xi and Xo. For 
example, using the CM in Figure 1, the Xi document can be obtained from the result of the XPath 
expression “/CM/DomainOntology” over the Hodgkin&Huxley CM element XOPh, and by filling 
its leaf nodes with the input values. Thus, /Neuron/Axon/Hogking-Huxley/m = 0,1 illustrates a 
possible value assignment for the input parameter m. Ii and Oi are the mappings defining the 
correspondence (see definition 1) between the input and output variables in Vi and Wi and the 
input and output parameter values in Xi and Xo. Finally, IS represents simulation set-up 
parameters. 

Definition 1: Correspondence assertions in Ii and Oi are specified as $x = Path, where $x is a 
variable in {Vi ∪ Wi} and Path is an XPath4 expression pointing to a data element in Xk’, 
k={i,o}, whose leaf node is either an input parameter value or an output value. 

3.3.3 Simulation Query 

A simulation query combines the head and its body into a clause as illustrated in (6). 

                                                                 
4 http://www.w3.org/TR/xpath, last access 26/04/2008. 

 



7 
 

 
 

S(K) := S1 ((V1, W1) ; (Xi1, Xo1) ; (I1, O1) ; IS1) ∧ 

   S2 ((V2, W2) ; (Xi2, Xo2) ; (I2, O2) ; IS2) ∧                              (6) 

    ….         ∧ 

   Sn ((Vn, Wn) ; (Xin, Xon) ; (In, On) ; ISn) 

 

An example of a simulation query is given in Figure 2. This particular query returns the total 
ionic current across the membrane ($I) according to the parameters values specified in the input 
document HHCM01I. As discussed before, the user must provide a mapping from each query 
variable to the corresponding data element of the domain ontology XML serialization document. 
In this example, the input and output XML documents, Xi and Xo, are illustrated by documents 
HHCM01I and HHCM01O, respectively, both of type Neuron. 

S($I, $z) := VCM01((i:($m,$h,$n,$gNa,$gK,$gL,$ENa,$EK,$EL),o:($I)); 

   (HHCM01I, HHCM01O); 

                          ( $m = /Neuron/Axon/ Hodgkin-Huxley/m, 

                             ….5, 

                        $I = /Neuron/Axon/ Hodgkin-Huxley/I) )       ∧ 

                   CM026 (($I , $z); (ACM02I, ACM02O); 

                         ( $z=/Analysis/result) ) 

Fig. 2.  A simulation query example.  

4.     HYPOTHESIS MODELLING 

In order to integrate scientific hypotheses into the scientific model data model, we formally 
define a Hypothesis Data Model (HDM), taking into account the following conceptual 
definitions:  

Definition 2: phenomenon – represents a set of phenomena that scientists wish to explain; 
Definition 3: scientific hypothesis – represents a set of explanations for a given phenomenon; 
 

4.1    Hypothesis Data Model  

A HDM describes an experiment domain and is defined as: 
 HDM HDM HDM HDM ={PhPhPhPh, PhOPhOPhOPhO, HHHH, EEEE, SMSMSMSM,    VCMVCMVCMVCM, SQSQSQSQ}, where: 

• PhPhPhPh – is a set of phenomena, as defined in (1); 
• PhOPhOPhOPhO – is a set of phenomenon observations, which corresponds to a temporal recording of 

a phenomenon, quantitatively described by its attribute values. The specification in (1) for 
phenomenon observations is extended in the HDM as phphphphiiii    (obid, date, V, U, A), phphphphiiii        ∈∈∈∈ Ph, Ph, Ph, Ph, (7)    
where : 

phi is a phenomenon observation set label; obid is an observation identifier; V= <v1, v2, …, vk >; 

U =<a1, a2, …, al>), with ai ,vj ∈ Dm, Dn, respectively, Dm, Dn ⊆ D, for all 1 ≤ i ≤ k, 1 ≤ j ≤ l; V  
represents a list of initial set-up values and U a list of phenomenon comparable attributes. 
Finally, A is a list of annotations; 

                                                                 
5 The remaining mappings are not shown due to lack of space. 
6 The CM02 computational model has purposely not been described 
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• HHHH – is a set of hypotheses, representing possible explanations of identified phenomena. 
The set of scientific hypotheses are specified as hhhh (hid, title, Phid, f, sqid), (8) where: 

hid is an hypothesis identifier; title is a text describing the hypothesis; Phid  is a phenomenon 
identifier; f        is a comparison function, used to measure the accuracy of hypotheses with 
respect to observations; and sqid is an identifier for the corresponding simulation query schema 
as defined in (10). Observe that a simulation query establishes a consequent-antecedent 
relationship between the predicate appearing in the head of the clause with those in its body. 
The former provides the values for the corresponding experiment instance used in hypothesis 
validation, whereas the latter explains the hypothesis computation by means of a conjunction 
of other experiments;  

• EEEE – is a set of experiments. An experiment instance holds initial set-up values, in 
conformation with those of the phenomenon it attempts to simulate, and attribute values 
computed by the evaluation of the corresponding simulation query. These values are 
compared against phenomenon observation attribute values through a hypothesis 
comparison function. Experiments (Ei) are formally specified as EEEEiiii    (Eid, hid , date, Xi, ob, dist), 
(9) where: 

Ei ∈ E; Eid is an experiment identifier; hid    is a scientific hypothesis identifier, as in (8); Xi is an 
XML document holding values for the underlying CM setup and input parameters; ob is the 
identification of a set of phenomenon observations defining the observations comparison set 
and dist is a measure of distance, computed by a hypothesis comparison function f between 
the experiment instance and the explained phenomenon observations phj. Finally,  
• SMSMSMSM – is a set of scientific models;  
• VCMVCMVCMVCM – is a set of computational models data views; 
• SQSQSQSQ – is a set of simulation queries used to compute experiments. Different experiments can 

be evaluated by reusing a stored simulation query and applying different parameter values 
to it. The simulation query set is specified as SQSQSQSQ (sqid, listVCM, headlist, X, query-text), (10) 
where:    sqid identifies the simulation query; listVCM is a list of computational model data 
views associated with the experiment; headlist is a list of variables in the head of the 
clause; X is an XML document structuring the set of setup and parameter elements 
appearing in the simulation query; and query-text includes the text associated with the 
query simulation. 

4.2    A Running Example 

Let us consider a small modification of the scenario presented in section 3.1.2. Suppose we want 
to feed a scientific visualization application with the temporal variation on the value of the ionic 
current (I), in other words, the ionic current is a function of time. The result is a time series 
showing the variation of the ionic current during an interval of time ∆t. In addition, we will 
assume that independent scientific models are conceived to model the ionic current on each gate 
(i.e. sodium, potassium and leakage).  In this revised scenario, the formulae in (2) can be re-
written as: 

   I = ∫∫∫∫(1-d) m
3
h (E – ENa) gNa (t) dt  + ∫∫∫∫(1-d) n

4
 (E – EK) gK (t) dt + ∫∫∫∫(1-d) (E – EL) gL (t) dt   (11). 

In (11), d is the duration of the simulation and the membrane conductance gi is a function of 
the simulation time instant. The ionic current on each gate is modeled by a different scientific 
model, leading to the following computational models, expressed by its computation model label 
and the corresponding mathematical formulae: 

 ionicChannelNa: (∫(1-d) m
3h (E – ENa) gNa (t) dt); 
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 ionicChannelK: (∫(1-d) n
4 (E – EK) gK (t) dt); 

ionicChannelL: (∫(1-d) (E – EL) gL (t) dt). 

Given this new scenario, a scientist may formulate the following hypothesis concerning 
Hodking-Huxley model: The total ionic current on a membrane compartment is a time function 
of the ionic current on the sodium, potassium and leakage channels. 

In the following, we illustrate the use of the HDM model, HDM HDM HDM HDM ={Ph, PhO, H, E, SM, VCM, 
SQ}, based on the example expressed in (11). Initially, we present the phenomenon being studied, 
represented by its schema definition and instance, respectively: 

  PhPhPhPh ( Phid, OPh, title),  as in (1) and instantiated as 
 PhPhPhPhtotalioniccurrent (PhTIC,OTIC,“TotalIonicCurrent”). 

Next, we specify the phenomenon observations (PhO)  

    PhPhPhPhiiii    (obid, date,{ <m,n,h>,<gNA, gK, gL,d>< INA, IK, IL> , < totalIonic>}, A), as in (7), where 
 <m,n,h> are setup values; <gNA, gK, gL,d> and  <INA, IK, IL, totalIonic> are input and output 
parameters, respectively. Note that d refers to the observation duration in milliseconds. With 
respect to the example in (11), < totalIonic> corresponds to the comparable attribute of 
phenomenon PhTIC as in (7). It is instantiated as: 
totalIonicCurrent (ob1, “01/03/2010”, {<m1,n1,h1>,<0.039,6.0,2.73,1445>,<0.00025, 0.00040, 
0.00050>,<0.001>},”first measurement”);         (12) 
totalIonicCurrent (ob2, “03/03/2010”,{ <m1,n1,h1>,<0.039,6.0,2.73,1460>,<0.00028, 0.00037, 
0.00048>, <0.002>},”second measurement”); (12) 

In (12), two observations of the phenomenon totalIonicCurrent are depicted. The 
observations include an identifier, the date of the observation, a set of initial state values, 
specifying the context on which the phenomenon was observed, and a comparable attribute that 
quantitatively describes it. The latter serves as the basis for assessing hypotheses.   

A scientist formulates hypotheses that may or not be validated when compared to 
observations. Referring to our running example, the total ionic current phenomenon hypothesis 
(H) would be specified as: 

  hhhh (hid, title, Phid, f, sqid) as in (8), instantiated as 
 hhhh (h1 , “The total ionic current on a membrane compartment…”, PhTIC, fi, sqid);     (13) 

Observe that PhTIC identifies the phenomenon associated with this hypothesis. The scientific 
hypothesis text formulation appears as free text in the hypothesis definition. Additionally, sqid 
identifies the simulation query that computes instances of hypothesis (i.e. experiments). The 
evaluation of an experiment tries to simulate the phenomenon PhTIC. In this context, an 
experiment instance set corresponds to the set of results obtained by evaluating the simulation 
query associated with the hypothesis, and forms the basis for quantitative hypothesis validation.  

According to (9), the experiment instance would be represented as: 

EEEEiiii    (Eid, hid , date, {<m,n,h>,<gNA, gK, gL,t>< INA, IK, IL> , < totalIonic>}, ob, dist), instantiated as 

  EtotalIonicCurrent (e1,h1, “01/04/2010”, {<m1,n1,h1>,<0.039,6.0,2.73,1440>,<0.00028, 0.00037, 
0.00048>,<0.003>},< ob1, ob2>,0.005) (14). 

 The computational models designed to simulate the ionic channels and to compute the total 
ionic current are exposed to evaluation through computational model data views (see section 
3.3). Thus, in this running example the following data views with their schema are specified: 
totalIonicCurrent (i:($INA, $IK, $IL),o:( $totalIonic)); ionicChannelNa (i:($t, $m, $h, 
$gNA),o:($INA)); ionicChannelK (i:($t, $n, $gK),o:($IK)); ionicChannelL (i:($t, $gL),o:($IL)). 

 This set of data views are used in a simulation query to quantitatively compute the scientific 
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hypothesis that explains the total ionic current phenomenon. According to (10), the simulation 
query is expressed as: 

 SQSQSQSQ (sqid, listVCM, headlist, X, query-text) instantiated as    

 SQ SQ SQ SQ (sq1,{<totalIonicCurrent, ionicChannelNa, ionicChannelK, ionicChannelL>}, {totalIonic}, 

{<m, n, h, gNA, gK, gL,t>< INA, IK, IL, totalIonic>},“totalIonicCurrent ($totalIonic)= 
totalIonicCurrent ($INA, $IK, $IL, $totalIonic) ∧ ionicChannelNa ($t, $m, $h, $gNA, $INA) ∧ 

ionicChannelK ($t, $n, $gK,$IK) ∧ ionicChannelL ($t, $gL, $IL)”)      (15);     

  In our example, evaluation between experiment observations and hypotheses is done as 
following: observation results (ob1,ob2) corresponding to 0.001 and 0.002 values in (12) are 
confronted with 0.003 in (14), and with the distance 0.005 value computed by the hypothesis 
comparison function fi(13), provided by the scientist. This comparison result will show if the 
hypothesis simulation is approved or not. In negative case, new simulations can be specified. 

The proposed model distinguishes three aspects of a scientific investigation: phenomenon 
experiment, simulation and formal representation. Table 1 presents a synthesis of the hypothesis 
data model classified according to these groups.  

Table 1-  Main elements to be considered in the HDM 

Phenomenon 

experiment 

Phenomenon 
(Ph) 

Phenomenon 
observation 

(PhO) 

   

Simulation Hypothesis 

(H) 

Experiment 
(E) 

Computational  

Model (CM) 

Data View 
(VCM) 

Simulation query 
(SQ) 

Formal 

representation 

Scientific 
Model (SM) 

    

The elements of the hypothesis data model have been presented. In the next section, a 
discussion concerning the simulation query evaluation is presented. 

5.  HYPOTHESIS EVALUATION – FROM SIMULATION TO WORKFLOW 
EXECUTION 

The quantitative validation of a scientific hypothesis is based on the evaluation of the associated 
experiment and achieved by comparing its results with the phenomenon observation comparable 
attribute values, as illustrated in Figure 3. In this section, the evaluation of hypotheses is 
discussed.  

   Fig. 3.  Hypothesis evaluation process 
 QEF [Porto et al. 2007] is a software framework designed to support the evaluation of queries 
involving data transformation operations scheduled according to a data pipeline structure. Using 
QEF, non-typical database applications can be leveraged to a declarative invocation and take 
advantage of the optimizations already available in QEF, as for instance, operator parallelism. 
Data transformation operations are modeled as operators of a specific algebra and combined into 

Experiment Parser DAG QEF

observation experiment

Satisfactory
results

no

End
yes
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a valid expression in the form of a query evaluation plan (QEP) [Silberschatz et al. 2010]. 
Concerning the support for data representation, QEF makes it possible the definition of new data 
types and uses wrappers to adapt data-source data structures to a user data type embedded in a 
tuple envelope. Thus, operators read and write tuples that hold user data according to their data 
types. The combination of supporting specific algebra with the adaptation to data-source data 
structure produces a very powerful evaluation environment extensible for different application 
domains. 

 In the hypothesis data model, experiments are specified according to a simulation query. In 
this context, evaluating an experiment corresponds to evaluating the underlying simulation query 
with input parameters. Once a simulation query associates computational model data views in the 
form of a conjunction of predicates, its evaluation is equivalent to that of a conjunctive query, in 
which each CM data view predicate takes the form of a dependent-join operator [Florescu, D. et 
al.  1999]. The latter considers a relation with limited access to its data, only available through 
the binding of input values to query input variables. In the context of a CM data view evaluation, 
input parameters are bound to values, the CM is computed, and the resulting output is returned.       

  Completing the simulation query evaluation strategy, predicates share variables that establish 
a producer-consumer relationship. Given a variable in a simulation query, there is a single 
predicate in which it is either bound to a literal value or associated to an output parameter of the 
CM data view. All the remaining occurrences of the variable in the query consume its value. 
From a query evaluation point of view, such semantics implements a producer-consumer 
relationship between the predicate that associates a value to the variable and the others that read 
its content.  

 Thus, by modeling simulation query predicates as dependent-join operators and by 
establishing an evaluation order according to a producer-consumer relationship among 
predicates, a simulation query is modeled as a directed graph, in which nodes represent algebraic 
operators and directed edges define the producer-consumer relationship. Figure 4 depicts a 
directed graph representation of the simulation query in (15). 

   Fig. 4.  A simulation query evaluation graph 

5.1     Evaluating the Directed Graph Plan 

 Clearly, the graph in Figure 4 differs from traditional query evaluation plan, by presenting 
nodes with n producers, n > 2.  In particular, if the CM data view TotalIonicCurrent is to be 
modeled as a dependent-join it should not be a ternary operator. Conversely, some graphs may 
present a 1xN producer-consumer relationship, in which the output of an operator is split into n 
consumers, n ≥ 1. In order to support both data exchange models, two new operators are 
introduced: Merge and Split. These operators are classified as control operators [Ayres et al. 
2003] (in opposition to algebraic operators) as their function is to control the dataflow between 
nodes, instead of applying data transformations. The Merge control operator behavior consumes 
one tuple from each of its producers, merging them into a single tuple and returning it to its 
consumer operator. As a result, for a single tuple request from its consumer the Merge operator 
submits one tuple request for each of its producers. The Split control operator offers the inverse 

Ion ChannelNA Ion ChannelK Ion ChannelL

Total ionic
current
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behavior.  Observe that Merge and Split appear as patterns in workflow languages [Van Der 
Aalst 2003]. Figure 5 presents the graph of Figure 4 transformed into a query evaluation plan. 
Note that the bushy topology of the QEP in Figure 5 is an optimization strategy to enable running 
the CMs in parallel. A pipeline deep left topology is also viable. In this scenario each dependent-
join is a producer for the subsequent one, eliminating the need fort the Merge operator.  

 Finally, simulation queries update the Experiment information with the input-output values 
and the distance between simulation comparable attributes and the phenomenon observations, 
computed by the function associated to the corresponding hypothesis, as illustrated in Figure 6. 
 The Apply operator invokes the user defined function f computing the distance between the 
totalioniccurent computed by the simulation and the set of phenomenon observations as specified 
in the hypothesis. The topology of the QEP in Figure 6 does not change for different 
experiments. Thus, it can be transformed into a template to be added to the top of the directed 
graph produced by analyzing the simulation query. In order to illustrate the template structure, a 
dashed box in Figure 6 delineates the part of the QEP to be inserted into a simulation query plan.  
 

                        Fig. 5. Query evaluation plan                   Fig. 6. Updating experiment 

Once a QEP has been produced according to QEF language, the simulation can be run using the 
standard query execution iterator model [Graefe 2003].  

6.      CONCLUSION 

Managing in-silico simulations has become a major challenge for eScience applications. As 
science increasingly depends on computational resources to aid solving extremely complex 
questions, it becomes paramount to offer scientists mechanisms to manage the wealth of 
knowledge produced during a scientific endeavor.  

 This paper presented a semantic based hypothesis model that aims at integrating scientific 
hypotheses and the computational models used to execute them, associated with the phenomenon 
scientists wish to explain. Scientific hypotheses are explanations of observable phenomena 
expressed through the results of computer simulations, which can be compared against 
phenomena observations. The model allows scientists to record the existing knowledge about an 
observable investigated phenomenon, including a formal mathematical interpretation of it, if one 
exists. Additionally, it intends to serve as the basis for the formal management of the scientific 
exploration products, as well as supporting models evolution and model sharing.  
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 In order to illustrate the applicability of the model proposal, a hypothesis using a specific 
scientific model was formulated, from which some hypotheses were generated. The experiment 
instances resulted from the simulation queries applied over this model enabled to compare them 
with a set of experimental phenomena previously observed. A first prototype of the HDM 
together with the simulation query language were implemented on top of the QEF system to 
evaluate associated experiments. The system was designed in the context of a scientific model 
management system architecture with a set of minimal services that scientists may expect from 
such an environment.  

 There are various opportunities for future work. Qualitative modeling of hypotheses within an 
ontological context, hypothesis evolution and the adequacy of a scientific environment based on 
the hypothesis data model must be investigated. Moreover, the simulation query language 
enables a reduced set of scientific workflow constructs. Investigating the expressivity of datalog 
like rule languages for modeling scientific workflows is an interesting topic. Finally, there is a 
huge space for dynamic optimization of experiment evaluation.  
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